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A statistical picture of dielectric breakdown in solids for a linear two-dimensional geometry is presented and
discussed in this paper. The difference between branched structures grown on an open-planar geometry, such
as those studied by Sato and Hayak@Rlays. Rev. Lett79, 95(1997)] or by Elezgarat al.[Phys. Rev. Lett.

71, 2425(1993], and those structures grown on a linear two-dimensional geometry, like the one used in the
present paper to model dielectric breakdown, is not trivial and should be demonstrated. Boundary conditions of
an open-planar geometry are placed at infinity and therefore the morphology selection mechanism can be
studied by diffusion-limited aggregatiofbLA) in two dimensions, as was done by Sato and Hayakawa.
Unfortunately, the DLA approach cannot be used to model dielectric breakdown on a linear two-dimensional
geometry. This paper shows that the underlying morphology selection process does not depend strongly upon
the geometry[S1063-651%98)50301-1

PACS numbd(s): 05.70.Ln, 02.50-r

In the past few years, considerable theoretical and experthe degeneracy of the histories, which they call “history en-
mental efforts have been undertaken to investigate the scalopy,” are introduced by taking into account all possible
ing properties of rough surfaces of compact clusters. In thgrowth histories. By considering the thermodynamic proper-
past couple of decades, diffusion-limited aggregatidbA) ties of the growth history and harmonic measure, they found
has been recognized as one of the most plausible models ftire condition of the most probable history for diffusion-
many varieties of nonequilibrium growth phenomena includ-limited aggregatiofDLA) as a function of the mass fractal
ing dielectric breakdown, fingering of viscous fluids, surfacedimension of the resulting clusters. The “history entropy”
roughness, electrochemical deposition, and so on. In studiedncept was previously introduced by Elezgaetyal. [2]
of irreversible growth, one of the most essential and remainunder the name of “history probability,” that is, the prob-
ing problems is the morphology selection mechanism duringbility of finding a history from a seed patrticle to a resultant
stochastic growth processes. How probable is the form weluster, and they studied the morphology selection mecha-
observe in computer simulations or experiments? What aboutism of Laplacian growth.
the fluctuation of morphology during growth? To answer The difference between branched structures grown on an
these questions, one has to consider the ensemble of totgben-planar geometry, such as those studied by Sato and
growth histories as a snapshot, rather than observed clustetdayakawa[1] or by Elezgarayet al. and those structures
which is the subject of statistical mechanics. grown on a linear two-dimensional geometry, like the one

Recently, Sato and Hayakawa] have introduced a for- used in the present paper to model dielectric breakdown, is
malism of irreversible aggregation processes in terms of stasot trivial and should be demonstrated. Boundary conditions
tistical mechanics. Thermodynamical variables that includef an open-planar geometry are placed at infinity and there-

fore, the morphology selection mechanism can be studied by
diffusion-limited aggregatioffDLA) in two dimensions, as
* Author to whom correspondence should be addressed. was done by Sato and Hayakawa. Unfortunately, the DLA
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FIG. 1. lllustration of the two-dimensional model for simulating the
dielectric breakdown model. The upper horizontal line represents the elec (@
trode and the perpendicular segment represents the tip where the dischar¢
simulation begins. The other electrode is modeled by the lower horizontal
line. The discharge pattern is indicated by the black dots connected by thick
lines and it is considered equipotentigl=0). The dashed bonds indicate all
of the possible growth processes. The probability for each of these processe
is proportional to the local electric field.

approach cannot be used to model dielectric breakd@kn

This paper shows how the statistical-mechanics method:
can be applied to describe the distribution of electrical trees
generated in a growth model on a linear two-dimensional
geometry.

A two-dimensional square latticg=ig. 1), in which two
opposite sides represent the two electrodes, is considere:
Breakdown starts at a point of a high local field and this
enhancement is usually attributed to electrically conducting
inclusions. The conducting inclusions are represented by
electrode pins. Discharge simulation begins at one of the
electrode pins where a short filament represents the tip of on
pin. The rules assumed for the growth of the discharge pat
tern (the electrical treeare as follows.

(1) The electrical tree grows stepwise. The discharge
structure has zero internal resistance, i.e., at each point of th
structure the electric potentiap is #=0, whereas at the (o)

Count.erelemmde it isp=1. The discrete form of Laplace FIG. 2. Two simulated tree patterns obtained with the model, with the
equation same field exponeny (5=1); (a) a characteristic history patterih) a
1 pattern with a higher probability history.
b k= 3(Pir1kT D1kt Dik-1F Diki1) (1)
) ) ) - growth sites {,l) adjacent to the electrical tree, whdres
is solved with the previous boundary conditions. the set of possible candidates to be incorporated into the

(2) The probability that a bond will form between a point g|ectrical tree.
that is already part of the electrical tree and a new adjacent (3) A new bond(and poin} is chosen randomly and added
point is a function of the local field between the two pointsto the electrical tree.

(i.e., the potential difference between the two points (4) With the new electrical tree and the new boundary

power-law dependence with exponepis assumed and the conditions the process starts again. A couple of tree patterns
probability associated with pointisk at the structure and obtained from the model are shown in Fig. 2 for a constant

i’,k’ adjacent to but outside it is given by value (7=1).
According to the growth rule of the model, a collection
P KiK' = (ire)” @ of electrical treesCy, of “mass M” (number of bondsis
' ' ' obtained and the branching structu@g give the state of
(j;el" (507" damage as a function of “time(number of bonds In this

context, a probabilityp(C,, , ) for eachCy, can be assigned
The sum in the denominator refers to all of the possibleto each value of;.
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FIG. 3. Histogram of the probability distribution of thECy, ,7) val- & -0.04-
ues, withM and 7 fixed (=0.5 andM =300). The histogram is adjusted E
by means of a normal distribution. -0.06- \
Based on a number of numerical simulations, an expres -0.08 , : .
sion equivalent to that employed for open-planar geometn 015 -01 -0.05 o 0.05 0.1
by Elezgarayet al. [2] is obtained as x *
y Elezgarayet al. 2] In[p(Cw, ni}/P(Cw, m3)]
In[p(Cy,7)]=S(Cnm) +A(CM)B(7) +a(7,M), (3 FIG. 4. I{P(Cy ,)/P(Cya %)] VS I P(Cr ,7°)/p(C ,1%)], @s computed
for a representative statistical sample pbranched structures of masé
whereB(7) anda(#n,M) are two universal functiongy(Cy,) =100. Data come from the saddle-point approximation. The straight lines

pIays the role of the energy of the electrical tree, 5(]@M) are linear regression fits for the evaluationbgfy,M) andm( 7).

is a history degeneracy factor. The above expression for . o ) o
P(Cw,7) has the form of a Boltzmann weight j(») is  ally more “symmetrical (W|_th respect to an axis containing
identified with the inverse of the temperature amft;,M)  the tip than those with a higher probability history.

with the free energy. Then, the following equation can be To begin the study of the distribution of electrical trees,
written as various sets of 500 electrical trees of mads=100, 200,

300, 400, 500, 600, 700, 800, 900, and 1000, statistically
_ generated with different values of the growth parameter
a(mM)= ln{m%-w. eXHS(Cw) +ACW) B 7=0.5, 1.0, 1.5, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 are computed.
(4) Figure 3 shows the distribution of probability density his-
toriesp(Cy, , ) for different values of the field exponemt
The corresponding histogram is adjusted by means of a nor-
mal (Gaussiap distribution. The standard deviatidier) of
the normal distribution increases when the field paramster
is increased.
By using the approximate saddle-point metjad

This paper is mainly devoted to providing evidence for Eq.
(3) in the above-mentioned electrode geometry.

If Elezgaray’s notations are adopted, a histbrys a se-
guence{s,,s,,...,Sy} of M sites in the interelectrode gap
(included inZXx Z), so that for eacm<M, s,= (i, Ky is
the node incorporated into the electrical tree at the step
H(Cy) is the set of various possible histories that lead to the P(Cy 1)~ (Cy)p[he(Cn), 7], 7
electrical treeCy, .

For each value ofy, the probability of any historyr is  whereh,(Cy,) is any characteristic history &, .

defined by In  Fig. 4, ITp(Cy,m/P(Cw.75)]  versus
M &7 IN[p(Cy,77)/P(Cw,775)] was plotted for two different trees
m’'’m
Pthm=11 , (5)
m=1 2 7
irerym 0.02
) o 0.01 1 E
where for eacim=M the potential distributionp; , on the 0 H+Q
mth outer boundary',(h)=T'{s;,S,,...,Sn} is determined. 001] B th
Moreover, p(Cy ,7) is normalized over the set of all the = '02' +
electrical trees of madsl: £ -0.024 t
= -0.03 | +
2 P(Cy,7)=1. ® = 004 =
|Cul=M = 005 +

Any history that maximizes the distribution of history & -0-007 '
probabilitiesP(p) is called a “characteristic history” of the g 0071 +M = 100 o+
electrical treeC,, for a given 7. The M =1000 tree pattern -0.08 { BM =250
shown in Fig. 2a) belongs to the set of characteristic history -0.09 ; . . : ; :
patterns. These characteristic histories are different from 05 1 15 2 25 3 35 4

those occurring with the highest probabilitiggd]. An
M=1000 tree pattern with a higher probability history is
shown in Fig. 2b). A characteristic history pattern is gener- FIG. 5. Estimation ofn(#) for M =100 andM = 250.
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FIG. 7. Mean energyA) , of the branched structure vg as estimated
from a sample of 40 branched structures of méss 100 and 250, statisti-

. . cally generated with different values for the field expongnt
of massM =100 andM = 250, respectively, for different val-

ues of the field exponeny at the interval0,5]. Our choice
of 7 =1 and »3 =2 is arbitrary. The following equation
can be written from Fig. 4:

FIG. 6. Estimation ob(%,M)/M In M for M =100 andM = 250.

:|C;=M P(Cy,)IN[P(Cy, 75)/P(Cp, 735)]

IN[p(Cn, ) ]=IN[p(Cy, 75)] =—a'(n.M)/B'(n)=—da(n,M)/dB(7). (9
+m(7)In[p(Cy,71)/P(Cwm, 73)]

+b(7,M),

Data plotted in Fig. 7 were obtained from Et) by
®) plotting «(7,M) as a function of3(») from Figs. 5 and
6. From such a plot the derivative-da/dB of EQq. (9)

where m(#) and b(#»,M) (the slope and the value at the Was evaluated and plotted in Fig. 7 for two differekit
origin, respectivelyare obtained by linear regression fits and values M =100 and 250 _

are plotted in Figs. 5 and 6. By comparison with E@.and Numerical simulations of then model applied to a
(8), b(7,M) is identified with a(»7,M), and m(7) with two-dimensional stochastic model of electrical treeing in

B(7), whereas IFp(Cy .7 )/p(Cy , 7)1 is identified with the solid dielectrics were carried out. It was found that simulated
branching structure energi(Cy) and Ifp(Cy,7%)] with trees display behavior remarkably similar to that found

experimentally. The probability distribution of these
thelr:jesgfnnniraz?;?/ tﬁgt]ffl(lgv'\ci)n'g conclusions can be drai: branched structures is given by a Boltzmann weight,(Byg.
B(7) is independent oM, even forM as small asvi =100. where the inverse temperat_uﬁér;) depends only upon the
(i) a(n,M) scales asM In M. (iii) Our choice for the growth parametery (see Fig. 3, wh|le. the free energy
75, n* is arbitrary. a(n,M) scales aM InM as an extensive thermodynamlc
lI,t iszclear that@(r) anda(7.M)/M In M, as well as the quantity. The Boltzmann weight, Ed3), also involves a

hist t factoB(Cy,) that i ti | to the | -
degeneracy factdB(Cy)= In[p(Cy,75)], depend upon this istory entropy factoB(Cy) that is proportional to the loga

. " > rithm of the total number of histories leading @, [see Eq.
choice, although they only change by additive and multipli-7) 14 the best of our knowledge, this is the first evidence

cative constants. Both Figs. 5 and 6 clearly show the convery o+ alectrical trees grown on a lattice with axial symmetry

gence off(») anda(#,M)/M In M towards two universal, gyhihit the statistical-mechanics properties reported in this
mass-independent functions. paper.

To check the consistency of E(B), let us compute the
mean of the branched structure ene(gy ,, for various sets This research project was financially supported by the
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cally generated with different values for the field exponentthe Comision de Investigaciones Ciditaas de la Provincia
7=0.5, 1, 2, 3, 4, and 5: de Buenos Aires, and the Universidad Nacional de La Plata.
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