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A statistical picture of dielectric breakdown in solids for a linear two-dimensional geometry is presented and
discussed in this paper. The difference between branched structures grown on an open-planar geometry, such
as those studied by Sato and Hayakawa@Phys. Rev. Lett.79, 95 ~1997!# or by Elezgarayet al. @Phys. Rev. Lett.
71, 2425~1993!#, and those structures grown on a linear two-dimensional geometry, like the one used in the
present paper to model dielectric breakdown, is not trivial and should be demonstrated. Boundary conditions of
an open-planar geometry are placed at infinity and therefore the morphology selection mechanism can be
studied by diffusion-limited aggregation~DLA ! in two dimensions, as was done by Sato and Hayakawa.
Unfortunately, the DLA approach cannot be used to model dielectric breakdown on a linear two-dimensional
geometry. This paper shows that the underlying morphology selection process does not depend strongly upon
the geometry.@S1063-651X~98!50301-7#

PACS number~s!: 05.70.Ln, 02.50.2r
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In the past few years, considerable theoretical and exp
mental efforts have been undertaken to investigate the s
ing properties of rough surfaces of compact clusters. In
past couple of decades, diffusion-limited aggregation~DLA !
has been recognized as one of the most plausible model
many varieties of nonequilibrium growth phenomena inclu
ing dielectric breakdown, fingering of viscous fluids, surfa
roughness, electrochemical deposition, and so on. In stu
of irreversible growth, one of the most essential and rema
ing problems is the morphology selection mechanism dur
stochastic growth processes. How probable is the form
observe in computer simulations or experiments? What ab
the fluctuation of morphology during growth? To answ
these questions, one has to consider the ensemble of
growth histories as a snapshot, rather than observed clus
which is the subject of statistical mechanics.

Recently, Sato and Hayakawa@1# have introduced a for-
malism of irreversible aggregation processes in terms of
tistical mechanics. Thermodynamical variables that inclu
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the degeneracy of the histories, which they call ‘‘history e
tropy,’’ are introduced by taking into account all possib
growth histories. By considering the thermodynamic prop
ties of the growth history and harmonic measure, they fou
the condition of the most probable history for diffusio
limited aggregation~DLA ! as a function of the mass fracta
dimension of the resulting clusters. The ‘‘history entropy
concept was previously introduced by Elezgarayet al. @2#
under the name of ‘‘history probability,’’ that is, the prob
ability of finding a history from a seed particle to a resulta
cluster, and they studied the morphology selection mec
nism of Laplacian growth.

The difference between branched structures grown on
open-planar geometry, such as those studied by Sato
Hayakawa@1# or by Elezgarayet al. and those structure
grown on a linear two-dimensional geometry, like the o
used in the present paper to model dielectric breakdown
not trivial and should be demonstrated. Boundary conditio
of an open-planar geometry are placed at infinity and the
fore, the morphology selection mechanism can be studied
diffusion-limited aggregation~DLA ! in two dimensions, as
was done by Sato and Hayakawa. Unfortunately, the D
R1 © 1998 The American Physical Society
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approach cannot be used to model dielectric breakdown@3#.
This paper shows how the statistical-mechanics meth

can be applied to describe the distribution of electrical tr
generated in a growth model on a linear two-dimensio
geometry.

A two-dimensional square lattice~Fig. 1!, in which two
opposite sides represent the two electrodes, is conside
Breakdown starts at a point of a high local field and t
enhancement is usually attributed to electrically conduct
inclusions. The conducting inclusions are represented
electrode pins. Discharge simulation begins at one of
electrode pins where a short filament represents the tip of
pin. The rules assumed for the growth of the discharge
tern ~the electrical tree! are as follows.

~1! The electrical tree grows stepwise. The discha
structure has zero internal resistance, i.e., at each point o
structure the electric potentialf is f50, whereas at the
counterelectrode it isf51. The discrete form of Laplace
equation

f i ,k5 1
4 ~f i 11,k1f i 21,k1f i ,k211f i ,k11! ~1!

is solved with the previous boundary conditions.
~2! The probability that a bond will form between a poi

that is already part of the electrical tree and a new adjac
point is a function of the local field between the two poin
~i.e., the potential difference between the two points!. A
power-law dependence with exponenth is assumed and th
probability associated with pointsi ,k at the structure and
i 8,k8 adjacent to but outside it is given by

P~ i ,k→ i 8,k8!5
~f i 8k8!

h

(
~ j ,l !PG

~f j ,l !
h

. ~2!

The sum in the denominator refers to all of the possi

FIG. 1. Illustration of the two-dimensional model for simulating th
dielectric breakdown model. The upper horizontal line represents the e
trode and the perpendicular segment represents the tip where the disc
simulation begins. The other electrode is modeled by the lower horizo
line. The discharge pattern is indicated by the black dots connected by
lines and it is considered equipotential~f50!. The dashed bonds indicate a
of the possible growth processes. The probability for each of these proc
is proportional to the local electric field.
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growth sites (j ,l ) adjacent to the electrical tree, whereG is
the set of possible candidates to be incorporated into
electrical tree.

~3! A new bond~and point! is chosen randomly and adde
to the electrical tree.

~4! With the new electrical tree and the new bounda
conditions the process starts again. A couple of tree patt
obtained from the model are shown in Fig. 2 for a constanh
value ~h51!.

According to the growth rule of theh model, a collection
of electrical treesCM of ‘‘mass M ’’ ~number of bonds! is
obtained and the branching structuresCM give the state of
damage as a function of ‘‘time’’~number of bonds!. In this
context, a probabilityp(CM ,h) for eachCM can be assigned
to each value ofh.
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FIG. 2. Two simulated tree patterns obtained with the model, with
same field exponenth ~h51!; ~a! a characteristic history pattern,~b! a
pattern with a higher probability history.
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Based on a number of numerical simulations, an expre
sion equivalent to that employed for open-planar geometr
by Elezgarayet al. @2# is obtained as

ln@p~CM ,h!#5S~CM !1A~CM !b~h!1a~h,M !, ~3!

whereb~h! anda(h,M ) are two universal functions,A(CM)
plays the role of the energy of the electrical tree, andS(CM)
is a history degeneracy factor. The above expression fo
p(CM ,h) has the form of a Boltzmann weight ifb~h! is
identified with the inverse of the temperature anda(h,M )
with the free energy. Then, the following equation can be
written as

a~h,M !52 lnH (
uCM u5M

exp@S~CM !1A~CM !b~h!#J .

~4!

This paper is mainly devoted to providing evidence for Eq
~3! in the above-mentioned electrode geometry.

If Elezgaray’s notations are adopted, a historyh is a se-
quence$s1 ,s2 ,...,sM% of M sites in the interelectrode gap
~included inZ3Z), so that for eachm<M , sm5( i m ,km) is
the node incorporated into the electrical tree at the stepm.
H(CM) is the set of various possible histories that lead to th
electrical treeCM .

For each value ofh, the probability of any historyh is
defined by

P~h,h!5 )
m51

M f i m ,km

h

(
~ i 8,k8!PGn~h!

f i 8,k8
h

, ~5!

where for eachm<M the potential distributionf i ,k on the
mth outer boundaryGm(h)5G$s1 ,s2 ,...,sm% is determined.
Moreover, p(CM ,h) is normalized over the set of all the
electrical trees of massM :

(
uCM u5M

p~CM ,h!51. ~6!

Any history that maximizes the distribution of history
probabilitiesP(p) is called a ‘‘characteristic history’’ of the
electrical treeCM for a givenh. The M51000 tree pattern
shown in Fig. 2~a! belongs to the set of characteristic history
patterns. These characteristic histories are different from
those occurring with the highest probabilities@4#. An
M51000 tree pattern with a higher probability history is
shown in Fig. 2~b!. A characteristic history pattern is gener-

FIG. 3. Histogram of the probability distribution of thep(CM ,h) val-
ues, withM andh fixed ~h50.5 andM5300). The histogram is adjusted
by means of a normal distribution.
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ally more ‘‘symmetrical’’ ~with respect to an axis containing
the tip! than those with a higher probability history.

To begin the study of the distribution of electrical tree
various sets of 500 electrical trees of massM5100, 200,
300, 400, 500, 600, 700, 800, 900, and 1000, statistica
generated with different values of the growth parame
h50.5, 1.0, 1.5, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 are comput

Figure 3 shows the distribution of probability density his
toriesp(CM ,h) for different values of the field exponenth.
The corresponding histogram is adjusted by means of a n
mal ~Gaussian! distribution. The standard deviation~s! of
the normal distribution increases when the field parameteh
is increased.

By using the approximate saddle-point method@2#,

p~CM ,h!'s~CM !p@hc~CM !,h#, ~7!

wherehc(CM) is any characteristic history ofCM .
In Fig. 4, ln@p(CM ,h)/p(CM ,h2* )# versus

ln@p(CM ,h1* )/p(CM ,h2* )# was plotted for two different trees

FIG. 4. ln@p(CM ,h)/p(CM ,n2* )# vs ln@p(CM ,h1* )/p(CM ,n2* )#, as computed
for a representative statistical sample ofh branched structures of massM
5100. Data come from the saddle-point approximation. The straight lin
are linear regression fits for the evaluation ofb(h,M ) andm(h).

FIG. 5. Estimation ofm(h) for M5100 andM5250.
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of massM5100 andM5250, respectively, for different val-
ues of the field exponenth at the interval@0,5#. Our choice
of h1* 51 and h2* 52 is arbitrary. The following equation
can be written from Fig. 4:

ln@p~CM ,h!#5 ln@p~CM ,h2* !#

1m~h!ln@p~CM ,h1* !/p~CM ,h2* !#

1b~h,M !, ~8!

where m(h) and b(h,M ) ~the slope and the value at the
origin, respectively! are obtained by linear regression fits an
are plotted in Figs. 5 and 6. By comparison with Eqs.~3! and
~8!, b(h,M ) is identified with a(h,M ), and m(h) with
b(h), whereas ln@p(CM ,h1* )/p(CM ,h2* )# is identified with the
branching structure energyA(CM) and ln@p(CM ,h2* )# with
the degeneracy factorS(CM).

In summary, the following conclusions can be drawn:~i!
b~h! is independent ofM , even forM as small asM5100.
~ii ! a(h,M ) scales asM ln M. ~iii ! Our choice for the
h1* , n2* is arbitrary.

It is clear thatb~h! anda(h,M )/M ln M, as well as the
degeneracy factorS(CM)[ ln@p(CM ,h2* )#, depend upon this
choice, although they only change by additive and multip
cative constants. Both Figs. 5 and 6 clearly show the conv
gence ofb~h! anda(h,M )/M ln M towards two universal,
mass-independent functions.

To check the consistency of Eq.~3!, let us compute the
mean of the branched structure energy^A&h for various sets
of 40 branched structures of massM5100 and 250, statisti-
cally generated with different values for the field exponen
h50.5, 1, 2, 3, 4, and 5:

^A&h5^ ln@p~CM ,h1* !/p~CM ,h2* !#&h

FIG. 6. Estimation ofb(h,M )/M ln M for M5100 andM5250.
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5 (
uCM u5M

p~CM ,h!ln@p~CM ,h1* !/p~CM ,h2* !#

52a8~h,M !/b8~h!52da~h,M !/db~h!. ~9!

Data plotted in Fig. 7 were obtained from Eq.~4! by
plotting a(h,M ) as a function ofb~h! from Figs. 5 and
6. From such a plot the derivative2da/db of Eq. ~9!
was evaluated and plotted in Fig. 7 for two differentM
values (M5100 and 250!.

Numerical simulations of theh model applied to a
two-dimensional stochastic model of electrical treeing
solid dielectrics were carried out. It was found that simula
trees display behavior remarkably similar to that fou
experimentally. The probability distribution of thes
branched structures is given by a Boltzmann weight, Eq.~3!,
where the inverse temperatureb~h! depends only upon the
growth parameterh ~see Fig. 5!, while the free energy
a(h,M ) scales asM ln M as an extensive thermodynam
quantity. The Boltzmann weight, Eq.~3!, also involves a
history entropy factorS(CM) that is proportional to the loga
rithm of the total number of histories leading toCM @see Eq.
~7!#. To the best of our knowledge, this is the first eviden
that electrical trees grown on a lattice with axial symme
exhibit the statistical-mechanics properties reported in
paper.
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FIG. 7. Mean energŷA&h of the branched structure vsh, as estimated
from a sample of 40 branched structures of massM5100 and 250, statisti-
cally generated with different values for the field exponenth.
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